edexcel

Mark Scheme (Results)

Summer 2016

Pearson Edexcel
International Advanced Level
in Chemistry (WCHO2) Paper 01
Application of Core Principles of
Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 46659_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	B		(1)

Question Number	Correct Answer	Reject	Mark
$2(\mathrm{a})$	C		(1)

Question Number	Correct Answer	Reject	Mark
$2(\mathrm{~b})$	A		(1)

Question Number	Correct Answer	Reject	Mark
$2(\mathrm{c})$	C		(1)

Question Number	Correct Answer	Reject	Mark
2(d)	D		(1)

Question Number	Correct Answer	Reject	Mark
3	D		(1)

Question Number	Correct Answer	Reject	Mark
$4(\mathrm{a})$	D		(1)

Question Number	Correct Answer	Reject	Mark
4(b)	D		(1)

Question Number	Correct Answer	Reject	Mark
$4(\mathrm{c})$	A		(1)

Question Number	Correct Answer	Reject	Mark
$4(\mathrm{~d})$	D		(1)

Question Number	Correct Answer	Reject	Mark
5	B		(1)

Question Number	Correct Answer	Reject	Mark
$6(\mathrm{a})$	B		(1)

Question Number	Correct Answer	Reject	Mark
5(b)	B		(1)
Question Number	Correct Answer	Reject	Mark
7	C		(1)
Question Number	Correct Answer	Reject	Mark
8	B		(1)
9	B		(1)
Question Number	Correct Answer	Reject	Mark
10(a)	A		(1)
Question Number	Correct Answer	Reject	Mark
10(b)	D		(1)
Question Number	Correct Answer	Reject	Mark
11	C		(1)
Question Number	Correct Answer	Reject	Mark
12	A		(1)

Section B

Question Number	Acceptable Answers	Reject	Mark
13(a)	Ignore drawn shapes Shape is trigonal planar/ triangular planar Allow recognisable spelling eg triganol planar Bond angle $120\left({ }^{\circ}\right)$ Stand alone mark No TE on incorrect shape Answers may be given the wrong way round ie bond angle first, then shape	...pyramidal Just planar OR Trigonal OR Triangular ${ }^{\circ} \mathrm{C}$	(2)

Question Number	Acceptable Answers	Reject	Mark
*13(b)	(Shape) Ignore references to tetrahedral/pyramidal ALLOW Lone pair on central N atom NOT required ALLOW Any correct variation as long as the shape is clear Any angle between $106\left({ }^{\circ}\right)-108\left({ }^{\circ}\right)$ Mark M1 and M2 independently (Explanation) Minimum repulsion (between pairs/groups of electrons /centre of electron density) ALLOW maximum separation (between pairs/groups of electrons /centre of electron density) Lone pair-bond pair repulsions are greater /more than bond pair-bond pair repulsions OR Lone pair(s) repel more than bond pair(s)	No M1 if incorrect name for shape eg bipyramidal Just dot and cross TWO Ione pairs ${ }^{\circ} \mathrm{C}$...between atoms/ bonds ...between atoms/ bonds	(4)

Question Number	Correct Answer	Reject	Mark
$13(\mathrm{c})(\mathrm{i})$	$+7 /+$ VII	$7,-7$	(1)
	ALLOW		
$7+/ 7+$			

Question Number	Correct Answer	Reject	Mark
13(c) (ii)	 ALLOW OR IGNORE Any dot and cross diagram or added dots and crosses		(1)

| Question
 Number | Correct Answer
 $13(\mathrm{c})(\mathrm{iii})$

 $\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HClO}_{4}$
 Ignore state symbols even if incorrect.
 Atoms can be in any order.
 ALLOW $\mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{O}_{8}$
 ALLOW multiples | Mark |
| :--- | :--- | :--- | :---: |

(Total for Question 13 = 9 marks)

Question Number	Correct Answer	Reject	Mark
$14(\mathrm{a})$ (i)	(Concentrated) sulfuric acid acts as an oxidizing agent /oxidises iodide OR Iodide ions/HI act as a reducing agent OR Iodide ions/HI reduce the sulfuric acid (1)	(2)	
Iodide ions/HI are oxidized/converted to iodine ALLOW Iodine is formed	...reduced to iodine	(1)	

Question Number	Correct Answer	Reject	Mark
14(a)(ii)	Allow multiples for both equations. Ignore state symbols even if incorrect. $\begin{aligned} & \mathrm{P}_{4}+6 \mathrm{I}_{2} \rightarrow 4 \mathrm{PI}_{3} \\ & \mathrm{OR}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{PI}_{3} \\ & 2 \mathrm{P}+ \end{aligned}$ ALLOW $\begin{equation*} \mathrm{P}_{2}+3 \mathrm{I}_{2} \rightarrow 2 \mathrm{PI}_{3} \tag{1} \end{equation*}$ $\mathrm{PI}_{3}+3 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow 3 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}+\mathrm{H}_{3} \mathrm{PO}_{3}$ ALLOW $\mathrm{P}(\mathrm{OH})_{3}$ TE for second mark $\mathrm{PI}_{5}+\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH} \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{I}+\mathrm{POI}_{3}+\mathrm{HI}$	P_{3} PI_{5}	(2)

Question Number	Correct Answ er	Reject	Mark
$14($ b)(i)	As a (co-)solvent for both (aqueous) silver nitrate and bromoalkane OR As a (co-)solvent for polar and non-polar molecules OR To allow the reagents/reactants to mix/dissolve/become miscible	Just solvent ALLOW To dissolve the halogenoalkane (as it is not water soluble) OR Just (As a) co-solvent	

Question Number	Correct Answer	Reject	Mark
$14($ b)(ii)	Butan-1-ol	Butanol	(1)
	ALLOW		
	1-butanol	But-1-ol	
	OR		

Question Number	Correct Answer		Reject	Mark
$14(\mathrm{~b})(\mathrm{iii})$	Yellow		(1)	Pale yellow/ cream
	$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})$	\rightarrow	(2)	
		AgI(s)	(1)	

Question Number	Correct Answer			Reject	Mark
14(b)(iv)					(2)
		Observation with dilute aqueous ammonia	Observation with concentrated aqueous ammonia		
	Precipitate from Tube A	Dissolves/ soluble	Dissolves/ soluble		
	Precipitate from Tube C	No change/ insoluble/ppt and remains	No change/ insoluble/ppt and remains		
	Any two correct scores 1 mark All four correct boxes scores 2 marks				

Question Number	Correct Answer	Reject	Mark
$14(\mathrm{~b})(\mathrm{v})$	CBA		(1)
	OR		
	AgI, AgBr, AgCl		
	OR		
	Silver iodide, silver bromide, silver chloride		

Question Number	Correct Answer	Reject	Mark
* 14(b)(vi)	The carbon-halogen bond polarity decreases from chlorine to iodine (1)		(2)
	Allow reverse argument The rate depends on the carbon- halogen bond strength (which decreases from chlorine to iodine)		

Question Number	Correct Answer	Reject	Mark
$14(\mathrm{c})(\mathrm{i})$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}$		(1)
	ALLOW		
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$			
OR			
Displayed/ skeletal formula			
Ignore $\mathrm{C}_{4} \mathrm{H}_{8}$			

Question Number	Correct Answer	Reject	Mark
14 (c)(ii)	Type - elimination ALLOW dehydrohalogenation		(1)

Question Number	Correct Answer	Reject	Mark
14(c)(iii)	M2 depends on M1 Bromine $/ \mathrm{Br}_{2}$ (water) (Yellow to) colourless ALLOW Other colours brown/red/orange for bromine water OR Acidified potassium manganate(VII) $\mathrm{OR} \mathrm{H}{ }^{+}$and MnO_{4}^{-} Purple/pink to colourlessto clear Any other colour to clear	(20

Question Number	Correct Answer	Reject	Mark
$14($ d) (i)	$2 \mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{NH}_{4} \mathrm{I}\left(\mathrm{NH}_{4}+\mathrm{I}^{-}\right)$		(1)
	ALLOW		
	$\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{I} \rightarrow$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{HI}$ $\mathrm{C}_{4} \mathrm{H}_{9}$ for carbon chain Displayed formulae		

Question Number	Correct Answer	Reject	Mark
$14(\mathrm{~d})(\mathrm{ii})$	$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$		(1)
	OR		
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}$			
OR			
$\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{4} \mathrm{~N}^{(+)} \mathrm{I}^{(-)}$			
$\mathrm{ALLOW}^{(2)}$			
$\mathrm{C}_{4} \mathrm{H}_{9}$ for carbon chain			
Displayed formulae			

(Total for Question 14 = 19 marks)

Question Number	Correct Answer	Reject	Mark
$15(\mathrm{a})(\mathrm{i})$	$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}((\mathrm{~s}))$		(1)

Question Number	Correct Answer	Reject	Mark
$15(\mathrm{a})$ (ii)	(Nitrogen dioxide is a) brown gas/fumes/vapour	Any other colour with brown eg red brown.	(1)

Question Number	Correct Answer	Reject	Mark
15(a)(iii)	Oxygen relights/rekindles a glowing splint Ignore any reference to pops		(1)

Question Number	Correct Answer	Reject	Mark
15(a)(iv)	$2 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{BaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$ OR $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ Ignore state symbols even if incorrect ALLOW - equation in two steps - multiples - $2 \mathrm{~N}_{2} \mathrm{O}_{4}$ for $4 \mathrm{NO}_{2}$ M1 Correct entities (1) M2 Balancing (1) M2 depends on M1 Special case If the anhydrous salt equation is given: $2 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{BaO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ scores 1 max		(2)

Question Number	Correct Answer	Reject	Mark
15(b)	Any 3 of the following points. - Diagram of workable method eg	Heating in a water bath Test tubes with bungs Reflux apparatus mass	(3)
	OR Two test tubes being heated		
	- Identical heating /same amount of heat /constant heating		
	- Identical numbers of moles/amounts ALLOW Same mass/volume		
	(1)		
	- Time taken for brown fumes to form/positive test for oxygen		
	OR		
	Time taken for fixed volume of gas to be collected		
	OR Measure rate of gas given off		
	ALLOW		
	Gives out oxygen/nitrogen dioxide/gas faster		
	IGNORE Decomposes faster		
	Heat the sample up for the same time and masure volume of gas evolved would score two bullet points		

Question Number	Correct Answer	Reject	Mark
* 15(c)	M1 Calcium (ions) are smaller than barium (ions) /have a higher charge density Allow Atoms for ions Reverse argument M2 The calcium ion polarizes/distorts M3 The nitrate/anion (ion)/ $\mathrm{N}-\mathrm{O}$ bond is polarised/distorted/broken (this weakens the N-O bond)		(3)
Question Number	Correct Answer	Reject	Mark
15(d)	Calcium - red ALLOW brick red / yellow red Barium - pale green/ apple green/green ALLOW greenish	Crimson	(2)

(Total for Question 15 = 13 marks)
(Total for Section B = 41 marks)

Section C

Question Number	Correct Answer	Reject	Mark
16(a)(i)	ALLOW Any bond lengths and any angles. Ignore displayed/structural formulae (1)		(2)

Question Number	Correct Answer	Reject	Mark
16 (a)(ii)	(Higher boiling temperature because) stronger / more / higher London/dispersion forces OR instantaneous dipole-induced dipole forces ALLOW Stronger Van der Waals forces/ VdW IGNORE minor spelling errors because it has more electrons intermolecular forces	(2) ALLOW larger surface area/more points of contact	

Question Number	Correct Answer	Reject	Mark
16(a)(iii)	Because they damage the ozone layer OR (Halothane products like) 1,1,1-trichloroethane are narcotic inhalants / poisonous / toxic ALLOW Carcinogens/ greenhouse gases I GNORE References to just: - "formation of chlorine radicals" - formation of Cl• - harmful/bad for environment	Any statement that this compound is a CFC OR forms Cl_{2} (on breaking down)	(1)

Question Number	Correct Answer	Reject	Mark		
$16(\mathrm{~b})(\mathrm{i})$	I	Cl	I	Cl	

Question Number	Correct Answer	Reject	Mark
16(b)(ii)	ICl is a stronger electrophile / better electrophile Allow a correct description of an electrophile even if the term is not used. e.g. ICl has a vacancy for a bonding pair of electrons OR ICI (bond) is polar/has a dipole NOTE: ALLOW "the ICI (bond) is more polar" OR Mention of presence of the I ${ }^{\text {ס+ }}$ (in ICI) ALLOW 'It' for ICl IGNORE ICl bond is weaker		

Question Number	Correct Answer	Reject	Mark
16(b)(iii)	To prevent formation of free radicals	Causes oxidation OR CI breaks	(1)
	To prevent (I-CI) bonds breaking (homolytically) ALLOW To prevent UV/sunlight entering UV/sunlight causes it to react / decompose	\ldots..heterolytically	

Question Number	Correct Answer	Reject	Mark
16(b)(iv)	$\begin{array}{ccc} \mathrm{ICl}+ & \mathrm{I}^{-} \rightarrow & \mathrm{I}_{2}+\mathrm{Cl}^{-} \\ +1(-1) & -1 & 0 \\ 1 & & \end{array}$ (Iodine in) iodine monochloride/ICl/I ${ }^{\delta+}$ ALLOW I ${ }^{+} / \mathrm{I}\left({ }^{+1}\right)$ (in iodine monochloride)	Just 0 for ICl Just 'Iodine'	(1)

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{c})(\mathrm{i})$	From red/brown/yellow to	to colourless	
	pale yellow/ straw coloured ALLOW Red/brown/yellow colour fades/pales	(1)	

Question Number	Correct Answer	Reject	Mark
16 (c)(ii)	An insoluble compound forms (if starch is added too soon)		(1)
	OR Starch iodine complex forms ALLOW Any indication of solid formation		

In 16(d) penalise incorrect units once only
ALLOW TE in all parts from the previous part(s) Calculators needed!
PENALI SE rounding errors in (d)(v) to (d)(vii) only once
Also penalise 1 SF in (d)(v) to (d)(vii) only once unless trailing zeros omitted.

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{~d})(\mathrm{i})$	Number of moles of thiosulfate $=$ $\frac{40.0 \times 0.100}{1000}=4.00 \times 10^{-3} / 0.00400(\mathrm{~mol})$		(1)

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{~d})(\mathrm{ii})$	Number of moles of iodine $=0.00400 / 2=2.00 \times 10^{-3} / 0.00200(\mathrm{~mol})$ Allow TE from (i)		(1)

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{~d})(\mathrm{iii})$	$2.00 \times 10^{-3} / 0.00200(\mathrm{~mol})$ Allow TE from (ii)		(1)

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{~d})$ (iv)	$0.00200-0.00110=$ $9.00 \times 10^{-4} / 0.00090(\mathrm{~mol})$ Allow TE from (iii) unless value is negative (or if calculation reversed for this reason)	NOTE: A negative value in this part will not score. However, it will allow TE in (v) and (vi).	

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{~d})(\mathrm{v})$	$0.00090 \times 100 / 0.200=0.45(\mathrm{~mol})$ NOTE: (iv) $\times 500$		(1)

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{~d})(\mathrm{vi})$	$0.45 \times 2 \times 126.9=114(.2)(\mathrm{g})$ If $\mathrm{I}=127$ then final answer is $114(.3)$ (g) Ignore SF except 1.		(1)

Question Number	Correct Answer	Reject	Mark
$16(\mathrm{e})$	Sample titre - higher AND Iodine value - lower		(1)

(Total for Section C = 19 marks)
TOTAL FOR PAPER= 80 marks

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

